182. A Convenient Synthesis of Vinyl Sulfides

by Alan R. Katritzky*, Amir S. Afridi, and Wojciech Kuzmierkiewicz

Department of Chemistry and Center for Heterocyclic Compounds, University of Florida, Gainesville, Florida 32611-2046, USA

(24.VI.91)

tert-Alkyl sulfides, with an α -(1*H*-benzotriazol-1-yl) group 6 and 13, are readily prepared from *N*-[(aryl-thio)methyl]-1*H*-benzotriazoles 3 and *N*-(11), respectively, by reaction with BuLi and then with the appropriate electrophile. The tert-alkyl sulfides 6 and 13 are smoothly converted by BF₃·OEt₂ into vinyl sulfides 5, 7 or 12, respectively, in satisfactory yields.

Introduction. – Vinyl sulfides are useful synthetic intermediates [1]. Routes to molecules having C=C-S structural units are thus of considerable interest, and several have been described: *i*) Vinyl sulfides have been prepared by the direct treatment of cyclic ketones with thiols in the presence of strong acids (P_2O_5 , TsOH, AlCl₃) [2–5]; however, acyclic ketones give poor yields. *ii*) The addition of thiols to acetylenes in the presence of a base [6–9]. *iii*) The Wittig reaction of suitable phosphoranes with carbonyl compounds [10], as well as the related phosponate olefins synthesis can lead to vinyl sulfides [11]. Thus, diethyl(methylthio)methyl phosphonate is alkylated by successive treatments with BuLi and an alkyl iodide to give the corresponding 1-(methylthio)alkyl-phosphonate esters. Their lithio derivatives react with aldehydes or ketones to form α -alkoxy-phosphonate adducts, which decompose upon heating at 50° (in THF) to form substituted methyl vinyl sulfides. Vinyl sulfides are accessible also through the reaction of (alkylidene)triphenylphosphoranes with thiolesters [12]. *iv*) Pyrolysis of thioacetals is a well-established route to vinyl sulfides [13]. An alternative procedure involves the conversion of dithioketals by using the Et₂Zn/CH₂I₂ reagent [5] [14].

Recently, we have reported [15] that *tert*-alkyl sulfides can be readily prepared by displacement of 1*H*-benzotriazole from α -benzotriazole sulfides with *Grignard* reagents. In the present paper, we report a new synthetic route to vinyl sulfides of the type Ar-S-C=C by the elimination of 1*H*-benzotriazole from *tert*-alkyl sulfides.

Results and Discussion. – Preparation of N- $[\alpha$ -(Arylthio)alkyl]-1H-benzotriazoles **6a-j** and **13a-c**. Using the methodology previously developed in our laboratories, tertalkyl sulfides of type **6** were prepared in good yield from 1-[(phenylthio)methyl]-1Hbenzotriazole (**3a**) [16] or 1-{[(4-methylphenyl)thio]methyl}-1H-benzotriazole (**3b**). The benzotriazoles **3a** and **3b** are readily available from 1-(chloromethyl)-1H-benzotriazole (**1**) and the appropriate thiophenol **2a**, **b**. Compounds **3a** and **3b** formed anions with BuLi at -78° (Scheme 1) which, with PhCH₂Br and 4-methylbenzyl chloride, gave the expected alkylated products **4a-d** in 83-89% yield (Table 1). Treatment of sec-alkyl sulfides **4a-d** with more BuLi readily afforded the α -lithio derivatives, which reacted with MeI, 1-iodoethane, 1-iodobutane, 1-bromoheptane, benzyl chloride, and 4-methylbenzyl bromide to provide the corresponding tert-alkyl sulfides **6a-j** with an α -benzotriazolyl

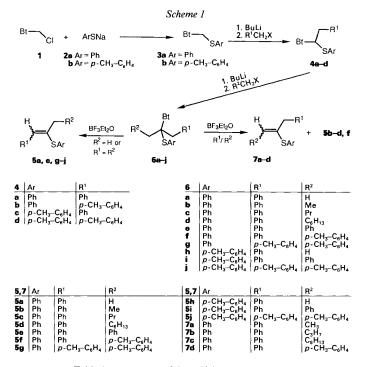


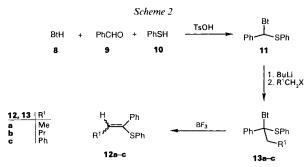
Table 1. Preparation of the Sulfides 3, 4, 6, 11, and 13

Com	pound (Formula)	Electrophile	Yield [%]	M.p. [°C] ^a)	Solvent ^b)
3b	(C ₁₄ H ₁₃ N ₃ S)	_	80	101-103	EtOH
4a	$(C_{20}H_{17}N_3S)$	PhCH ₂ Br	79	108-110°)	MeOH
b	$(C_{21}H_{19}N_3S)$	p-CH ₃ C ₆ H ₄ CH ₂ Cl	74	98-100	MeOH ^d)
c	$(C_{21}H_{19}N_3S)$	PhCH,Br	81	60-62	E-PE
6a	$(C_{21}H_{19}N_3S)$	Mel	88	100-102	MeOH
b	$(C_{22}H_{21}N_3S)$	EtI	70	9698	MeOH
c	$(C_{24}H_{25}N_3S)$	BuI	86	110-112	MeOH
d	$(C_{27}H_{31}N_3S)$	$C_7H_{15}Br$	86	8385	MeOH
e	$(C_{24}H_{19}N_3S)$	PhCH ₂ Br	83	138-140 ^e)	MeOH
f	$(C_{28}H_{25}N_{3}S)$	p-CH ₃ C ₆ H ₄ CH ₂ Cl	90	136-138	MeOH
g	$(C_{28}H_{27}N_3S)$	p-CH ₃ C ₆ H ₄ CH ₂ Cl	80	111113	MeOH
h	$(C_{22}H_{21}N_3S)$	Mel	81	60-62	MeOH
i	$(C_{28}H_{25}N_{3}S)$	PhCH ₂ Br	90	55-57	E-PE
j	$(C_{30}H_{29}N_3S)$	p-CH ₃ C ₆ H ₄ CH ₂ Cl	82	65-67	E-PE ^c)
11	$(C_{19}H_{14}N_{3}S)$		35 ^f)	81-82	Е
13a	$(C_{21}H_{18}N_{3}S)$	EtI	75	126-128	MeOH
b	$(C_{23}H_{23}N_{3}S)$	Bul	80	127-129	MeOH
c	$(C_{26}H_{21}N_{3}S)$	PhCH ₂ Br	95	128-130	EtOH

^a) All compounds gave satisfactory elemental analyses.

^b) E: Et₂O, PE: petroleum ether.

c) [16]: m.p. 103-105°.
d) Initially purified by


d) Initially purified by column chromatography (hexane/CHCl₃ 2:1).

c) [16]: m.p. 140-142°.
f) The yield was calcula

^f) The yield was calculated only for the 1*H* isomer.

group in good yields. Products **6a-j** were purified by recrystallization or column chromatography followed by recrystallization (*Table 1*).

In an alternative approach, condensation of benzotriazole (8), benzaldehyde (9), and benzenethiol (10) in the presence of catalytic TsOH in refluxing toluene with azeotropic removal of H₂O, formed α -(benzotriazolyl)alkyl sulfide 11 as the 1*H* isomer contaminated with a trace of the 2*H* isomer. The 1*H* isomer was easily separated from the mixture by recrystallization from Et₂O. The sulfide 11 was lithiated by BuLi at -78° , and the carbanion formed trapped with electrophiles to give *tert*-alkyl sulfides 13 (*Table 1* and *Scheme 2*).

Synthesis of Vinyl Sulfides 5a-j, 7a-d, and 12a-c. The tert-alkyl sulfides with an α -(1*H*-benzotriazol-1-yl) group, 6a-j and 13a-c, were smoothly transformed into the corresponding vinyl sulfides on stirring in dry THF in the presence of an equivalent amount of BF₃·OEt₂ at 20° for 4 to 8 h. The vinyl sulfides were isolated in good yields (*Table 2*). In the cases of 6c, d and 6f, mixtures of two isomeric vinyl sulfides 5 and 7 were formed due to the presence of two different active α -H-atoms (*Scheme 1* and *Table 2*).

Compound ^a)	Substrat	Yield [%]	M.p [°C] ^b)
5a	ба	60	oil ^c)
b, 7a	6b	75	oil
c, 7b ^d)	6с	62	oil
d, 7c	6d	70	oil
e	6e	85	60-62
f, 7d	6f	83	54–56
g	6g	80	79-81
h	6h	52	oil
i	6j	91	71-73
j	6j	90	82-84
12a	13a	92	42–43 ^e)
b	13b	71	oil
с	13c	71	63–64 ^f)

Table 2. Preparation of Vinyl Sulfides 5, 7, and 12

^a) Vinyl sulfides 5 and 7 were obtained as a mixture of (Z)- and (E)-isomers.

b) All compounds gave satisfactory elemental analyses.

^c) B.p. 137–140°; [17]: b.p. 138–140°.

d) From compounds 6b-d and 6f mixtures of two types of vinyl sulfides 5 and 7 were obtained.

e) [17]: m.p. 42-43°.

^f) [17]: m.p. 63–64°.

When $R^2 = H$ or $R^1 = R^2$, precursor 6 gave only a mixture of (Z)- and (E)-isomers of 5. tert-Alkyl sulfides 13 gave vinyl sulfides 12 in good yield as (Z/E)-mixtures.

Compound **6f** was also converted into vinyl sulfide **5h** upon reaction with PhMgBr. After 24-h treatment of **6f** with NaH in boiling THF or toluene, *ca*. 50% of the starting material was recovered. HCl was also used for the transformation of **6** into vinyl sulfides. However, yields were lower than the BF₃ reactions due to the partial hydrolysis of **6** to the ketones.

Thus, the elimination of 1H-benzotriazole from *tert*-alkyl sulfides with an α -benzotriazolyl group in the presence of BF₃·OEt₂ provides a convenient route to the synthesis of a variety of vinyl sulfides in good-to-excellent yields.

The most appropriate method for the preparation of vinyl sulfides of the type described in this paper, was the *Emmons-Horner* phosphonate reaction [11], described in the *Introduction*. This also involves a three-step sequence with yields (*ca.* 50%) which are comparable with our method in several instances, but in some cases (acetophenone, cyclopentanone) only traces (up to 10%) of the products were formed.

¹*H*- and ¹³*C*-*NMR Spectra*. The structure of all the compounds were determined on the basis of their ¹*H*- and ¹³*C*-*NMR* spectra. It is interesting to note that in the ¹*H* spectra of *sec*-alkyl sulfides **4**, the two methylene protons and the N-*CH* proton connected to the asymmetric C-atom resonate as *ABX* systems. The CH₂ protons of benzylic substituents in **6** R¹ \neq R² resonate as two *doublets* with large geminal coupling constants of *ca*. 14–15 Hz. H-C(4) and H-C(7) of the 1-substituted 1*H*-benzotriazole moieties are shifted to *ca*. 7.95 and 7.60 ppm in the case of **4** and to *ca*. 8.30 and 8.10 ppm for **6**, respectively. The ¹³C-NMR spectra revealed typical patterns for 1-substituted 1*H*-benzotriazoles.

¹H-NMR Spectra of vinyl sulfides showed two *singlets* corresponding to the (Z)- and (E)-vinylic protons (ca. 6.80 and 6.70 ppm), clearly assignment of configuration from this is not possible. In the cases of vinyl sulfides of types 5 and 7, the isomeric ratios were close to 1:1, but for compounds 12 the ratios were all ca. 4:1. ¹³C-NMR Spectra of vinyl sulfides also indicated (Z)- and (E)-isomer formation.

We are grateful to the USAID/AED officials Islamabad and Washington D.C. for financial support to A.S. Afridi and to the Education Department N.W.F.P. Pakistan for his leave.

Experimental Part

General. M.p.: determined on a hot-stage apparatus, uncorrected. ¹H- (300 MHz) and ¹³C- (75 MHz) NMR spectra were recorded on a *Varian-VXR-300-MHz* spectrometer; CDCl₃ as solvent, TMS as the internal standard. THF was distilled from sodium-benzophenone prior to use. Column chromatography was performed with MCB silica gel (230-400 mesh). 1-(Chloromethyl)-1*H*-benzotriazole (1) [18] and 1-[(phenylthio)methyl]-1*H*-benzotriazole (3a) [16] were prepared by the literature method quoted.

 $l - \{[(4-Methylphenyl)thio]methyl\}-1$ H-benzotriazole (3b). To an ice-cold soln. of 4-methylbenzenethiol (12.4 g, 0.1 mol) in MeOH (200 ml) was added Na metal (2.3 g, 0.1 mol). After complete dissolution of the metal, 1-(chloromethyl)-1H-benzotriazole (16.7 g, 0.1 mol) was added in small portions over 10 min. The soln. was allowed to warm to r.t. and stirred 6 h. The solvent was removed under reduced pressure to give a solid which was triturated with H₂O (3 × 50 ml). The resulting solid was collected and washed with 50% EtOH/H₂O (2 × 50 ml) to give 3b (20 g) (Table 1).

*1-[Phenyl(phenylthio)methyl]-1*H-benzotriazole (11). A mixture of 1*H*-benzotriazole (24 g, 0.2 mol), benzaldehyde (21.2 g, 0.2 mol), benzenethiol (20.6 ml, 0.2 mol), and TsOH (0.2 g) in toluene (200 ml) was refluxed for 14 h with azeotropic removal of H₂O. The mixture was stirred with 5% NaOH (500 ml), extracted with Et₂O (3×50 ml), washed with H₂O (3×50 ml), dried (MgSO₄), and the solvents were removed under reduced pressure to give an oily residue which was recrystallized from Et₂O (100 ml) (*Table 1*).

1934

 α -Substituted and α, α -Disubstituted Sulfides **4a-d**, and **6a-j** and **13a-c**, Resp. General Procedure. To a soln. of the appropriate sulfide **3**, **4**, or **11**, (0.01 mol) in dry THF (30 ml), BuLi (0.01 mol in hexane) was added slowly via a syringe at -78° under N₂. The mixture was stirred for 1 h at -78° , and a soln. of the electrophile (0.01 mol) in dry THF (5 ml) was slowly added. The resulting mixture was stirred for 2 h at -78° and for 15 h at r.t. The product was quenched with aq. NH₄Cl, extracted with Et₂O (3 × 30 ml), the Et₂O layer washed with H₂O dried (MgSO₄), and the solvent removed. The product was purified by recrystallization (*Table 1*).

Vinyl Sulfides **5a–j**, **7a–d**, and **12a–c**. General Procedure. $BF_3 \cdot OEt_2$ (3 mmol) was added to a soln. of the appropriate tert-alkyl sulfide **6a–j** or **13a–c** (3 mmol) in dry THF (20 ml) and the product stirred at r.t. under N₂ for 2–5 h. The solvent was evaporated and the residue dissolved in Et₂O and washed with 10% Na₂CO₃ soln., H₂O, and dried (MgSO₄). The Et₂O was removed under reduced pressure and the oil purified by column chromatography (hexane) followed by recrystallization from MeOH.

REFERENCES

- 'Organic Compounds of Sulphur, Selenium, and Tellurium', The Chemical Society, Burlington House, London, 1970-79, Vol 1-5.
- [2] D. J. Peterson, J. Org. Chem. 1968, 33, 780.
- [3] F.A. Carey, A.S. Court, J. Org. Chem. 1972, 37, 939.
- [4] B. M. Trost, D. E. Keeley, J. Am. Chem. Soc. 1976, 98, 248.
- [5] B. M. Trost, A. C. Lavoie, J. Am. Chem. Soc. 1983, 105, 5075.
- [6] R. A. Raphael, 'Acetylenic Compounds in Organic Synthesis', Academic Press, New York, 1955, pp. 43.
- [7] S. V. Amosova, N. I. Ivanova, B. A. Trofimov, Zh. Org. Khim. 1977, 13, 458.
- [8] R. N. Kudyakova, A. N. Volkov, Zh. Org. Khim. 1977, 13, 934.
- [9] S. R. Buzilova, I. D. Sadekov, T. V. Lipovich, T. M. Filippova, L. I. Vereschagin, Zh. Obshch. Khim. 1977, 47, 1999.
- [10] G. Wittig, M. Schlosser, Chem. Ber. 1961, 94, 1373.
- [11] E.J. Corey, J.I. Shulman, J. Org. Chem. 1970, 35, 777.
- [12] T. Kumamoto, K. Hosoi, T. Mukaiyama, Bull. Chem. Soc. Jpn. 1968, 41, 2742.
- [13] A. S. Atavin, B.A. Trofimov, A.I. Mikhaleva, I.P. Vasilev, Izv. Akad. Nauk SSSR, Ser. Khim 1972, 2014.
- [14] A. D. Rodriquez, A. Nickon, Tetrahedron 1985, 41, 4443.
- [15] A. R. Katritzky, S. Perumal, W. Kuzmierkiewicz, P. Lue, J. V. Greenhill, Helv. Chim. Acta 1991, 74, 1924.
- [16] A. R. Katritzky, S. Rachwal, K. C. Caster, F. Mahni, K. W. Law, O. Rubio, J. Chem. Soc., Perkin Trans. 1 1987, 781.
- [17] E. Campaigne, J. R. Leal, J. Am. Chem. Soc. 1954, 76, 1272.
- [18] J.H. Burckhalter, V.C. Stephens, L.A.R. Hall, J. Am. Chem. Soc. 1952, 74, 3868.